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SUMMARY 

In this paper the linearized spin-up process of a two-layer fluid in a rotating annulus is examined. The flow is 
induced by a source and a sink at the inner boundary of the annulus. The spin-up is controlled by the Ekman- 
suction velocity as well as the moving interface. On the assumption of vanishing small internal and external 
Froude numbers, the vorticity in each layer is a function of time only and can be expressed in terms of the 
hypergeometric functions. The components of the velocity can readily be deduced in terms of the vorticity. 
Some numerical results are given to illustrate the spin-up process. 

1. Introduction 

In the present paper a time-dependent, source-sink driven flow in a rotating annulus will be 

investigated. The source and the sink are located at the inner boundary of the annulus, and are 
located within two immiscible fluids of  different density and viscosity. In order to draw 

attention to the effects of  a moving interface and a doubly connected region, the physical 

configuration is chosen as simple as possible. 
The classical spin-up problem of a two-layer fluid in a rotating cylinder was considered by 

Pedlosky [1], and more generally by Berman, Bradford and Lundgren [2]. For the case of a 
one-layer fluid, a time-dependent, source-sink flow in a rotating annulus was studied by 

Barcilon [3], while a sink-driven flow with a free surface was studied by Kranenburg [4]. A 
related problem was also considered by Kuo and Veronis [5], and a steady source-sink driven 

flow in a two-layer fluid within a rotating annulus was investigated by Maeland [6]. 

The fundamental equation which governs the linearized spin-up process is the equation for 

the vertical component of  relative vorticity in each layer. The vorticity is induced by the 

moving interface and the Ekman-suction velocity from the boundary layers at the interface and 

the rigid bottom of the rotating annulus. The upper surface is not exposed to any (air) stress. 
On the assumption that the Ekman-layers are quasi-steady, i.e. that the boundary layers can be 

considered as essentially steady after a time of order O(I'~-t), where I2 is the Coriolis frequency, 
we can use the general expressions for the (quasi-steady) Ekman-layer suction velocity at the 
interface as derived in [6]. It is important to note that we do not account for the early states 
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of the spin-up process when this approximation is used, so in our terminology the initial values 
need not be zero relative motion in each layer, cf. Greenspan [7]. 

In the present paper the governing equations are solved under the assumption of vanishing 
small internal and external Froude numbers. The consequences of this approximation is that 
the relative vorticity in each layer is a function of time only. Moreover, it implies that the upper 
free surface and the interface are level surfaces. On the other hand, with this approximation, we 
are able to solve the resulting equations in terms of well-known functions of mathematical 

physics (hypergeometric function). The main conclusions of this paper are concerned with the 
interior (geostrophic), axisymmetric motion. 

At the initial point of time, O(~2-t), the vorticity and the azimuthal velocity are equal to 
zero in each layer. There is a weak radial and vertical motion in each layer as a consequence of 
the quasi-steady approximation. As the time increases, the relative vorticity increases/decreases 
in the upper/lower layer as a consequence of the conservation of the potential vorticity. As 
soon as the vorticity becomes non-zero, the Ekman-suction will modify this situation and 
viscous effects will determine the time evolution. The difference in the azimuthal velocities, 
which will increase from zero, implies that the boundary layer transports also increase from 
zero. Subsequently, the transport of fluid will be confined to boundary layers, although there 
will be a weak Ekman-suction into the boundary layer at the bottom of the annulus. The time 
evolution of the vorticity cannot be described in simple terms, since there are too many 
(dimensionless) parameters which determine the behavior. The actual solution of the problem 
necessitates numerical techniques in order to compute the relative vorticity. We present some 
results in order to illustrate the spin-up process. Finally, the velocity components can readily be 
deduced in terms of the vorticity. 

2. Formulation of the problem 

The region between two co-axial cylinders of inner and outer radius a and b is filled with two 
immiscible fluids of different density and viscosity, which form two layers of thickness hi and 
h2 (see Figure 1). The cylinders are rotating with a constant angular velocity about the axis of 
symmetry, which coincides with the vertical direction. We use cylindrical co-ordinates (r, 0, z) 
fixed in the rotating frame of reference. We also use subscripts ( )1 and ( )2 to denote the 
upper and lower fluid, respectively. The flow is induced by a source of density Pl and viscosity 

~1 at the inner cylinder, and a sink of fluid with density P2 and viscosity/~z also at the inner 
cylinder. The positions of the source and the sink are close to the upper free surface and to the 
lower bottom, respectively. The strength of  the source and the sink is defined in terms of the 
fluid volume emitted/absorbed in unit time (m3/s). The interface is assumed to move in the 
vertical direction with a constant velocity q (m/s), caused by the equal strength of the source 
and the sink, so that the total volume is conserved (incompressible fluids). 

The boundary conditions are no-slip at all rigid boundaries. At the interface we must have 
continuity of velocity and viscous stress, in addition to the kinematic condition w = dh/dt. At 
the upper free surface we have the condition of no (air) stress. 

We will denote the partial derivatives with respect to r, z and t (time) by subscripts ( )r, ( )z 
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Figure 1. Schematic sketch of the physical conf'~,uration (horizontal and vertical cross sections), and the 
def'mitions of some physical variables. 

and ( )t, respectively. We use capital letters to denote the interior values of  the velocity U = 
(U, V, I¢), and we ask for axisymmetric solutions, i.e. a/a0 -= 0. Away from the viscous bound- 
ary layers (the interior regions), the governing equation for the linearized spin-up problem is the 
vertical component of  the vorticity equation 

Zt = 212Wz, (la) 

where the relative vorticity (Z) is defined by the relation 

Z = l (rv), .  (Ib) 
? 

For the interior motion we also have, cf. Greenspan [7], 

u, = v~ = w... =o+z~ =o. Oc) 

so the vertical velocity is a linear function of the vertical co-ordinate (z). The vertical velocity is 
induced by the Ekman layer suction. On the assumption of quasi-steady flow, i.e. that the 
Ekman-layers become fully developed within a time of 0([2 -1) and then change only slowly, 
see Greenspan [7], we can use the well-known formulae for the Ekman-suction velocity to 
obtain W z in each layer. A detailed derivation was given by Maeland [6], and the results are 
given here by 
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1 bE~/2 
hlW'z = + q  2 i'+---k (Z'  --Z2), (2a) 

1 bE 1/2 
h2 W2z = -- q + ~" 1 + k (kZl - (1 + 2k)Z2), (2b) 

where we have denoted the ratio of the coefficients of viscosities by k 2 = p ~tz~/p2/a2, and the 
Ekman numbers in each fluid by E = ~u/(pg2b2). The Ekman numbers will be assumed to be 
small as compared to unity. We will also denote the ratio of the densities by m = p~ [P2. 

The linearized vorticity equations can then be written 

h lZ l t  = q(q- 2~2--C1Z1 + CiZ2), 

h2Z2t = q(-- 212 + kC2Z, -- (1 + 2k)C2Z2), 

(3a) 

(3b) 

where we have introduced the constants C~ and C2 defined by 

b a g l  ~2 b a e ]  ~ 
Cl q(1 + k)' C2 q(1 + k)" (4a,b) 

We emphasize that this set of equations presupposes that the Froude number is small. We do 
not account for the vorticity induced by the radial flow across constant-depth contours, nor the 
time-dependent deviation from the moving interface. This approximation implies that the 
thickness of each layer is a function of time only. In fact, we have the relations hi = h~(t) = 
H~ + qt and h2 = h2 (t) = 1-12 - q t ,  where H~ and//2 arethe initial thickness of the two layers, 
with H~ + H2 = H = constant. By inspection of equations (3a,b) we conclude that the relative 
vorticity is a function of time only, and it is clear that this greatly simplifies the analysis. 

Let us first find the particular solutions of equations (3a,b), which are time-independent, 
Z~, and Z2s, respectively. We obtain 

(1 + k)C,C2Z1, = 2f~((1 + 2k)C2 - C O ,  (5a) 

(1 + k)C~C2Z~, = 2a(kC2 --C~). (5b) 

In order to facilitate the actual algebra in the present paper, we will use the relation m2E~ = 

k2E2. From the definition of C~ and C2, we thus have mC~ = kC2. We will also define a Rossby 
number (Ro) in terms of the velocity q. However, since the interior (azimuthal) velocity is 
generally larger by a multiplicative factor E -~/2 than the mass flux producing it, see Maeland 
[6], we def'me the Rossby number by 

Ro-' = ~2bE~/2 = (I +k)C,. ~ ~ (6) 
q 

The solutions of equations (5a,b) can then be represented by 
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= -- l + 2 k ) - - I  , (7a) 
m 

k 
Z2, = 212Ro -- (m -- 1). (7b) 

m 

We note that since m ~< 1, Z2s ~< 0 when q > 0 (and vice versa). On the other hand, Z~8 can 

assume both positive and negative values depending on the actual values o f k  and m. For most 
practical situations when 1/2 ~< m ~< 1, however, we have Zls > 0 when q > 0. 

3. The vorticity equations 

In this section we will give the general solution of the time-dependent vorticity equations (3a,b). 

Since the thickness of the layers increases/decreases at a constant rate, the coefficients in these 
equations are not constant. The present problem is thus different from the classical spin-up 

problem of a two-layer fluid as considered in [1] and [2], where the mean thickness of each 

layer was constant. The present problem can be solved by a Taylor series expansion in powers 

of t, viz. 

Z, ( t )  = Zl(O ) + Z, t (O)t  + . . .  = + 212qt/Hx + O(t2), 

Z2 (t) = Z2(O) + Z2, (0) t + . . .  = -- 2nqt/H2 + O(t 2), 

(8a) 

(8b) 

so the vorticity of  the upper layer increases when q > 0, since the thickness increases, and vice 

versa in the lower layer. This is in agreement with the conservation of potential vorticity which 

can be written (212 + Z)/h = constant. Since the vorticities are zero at time t = 0, we obtain 

2 1 2 +Zt  = 2~2hl/H, =~ ZI  = 212(h , - -H~)/HI  = +212qt/Hx, (9a) 

212 + Z2 = 212h2/H2 =*" Z2 = 2~2(h2 --1-12)/112 = - 2~2qt/H2. (9b) 

However, this evolution cannot be true for all time, since the terms representing the viscous 

dissipation in the vorticity equations are not zero in general. In order to solve the problem, let 

us introduce the dimensionless variable T defined by 

h 2 = H 2 - - q t  = ( H  I + H 2 ) T  , ( 1 0 a )  

which gives 

h~ = Ht + q t  = (Ht + / / 2 ) ( 1 - - T ) ,  (10b) 

and finally 
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d d 
(HI +H~)~ -- -q ~-. (lO~) 

In this way we obtain the following set of equations, where we use the non-dimensional 

vorticity ~, defined by Z = 2~2~, 

(I - T)~T -- -- l + ¢~i -- C~2~, (1]a) 

T ~ T  ---- Jr 1 --kC221 4"(1 + 2k)C2~2. ( l i b )  

We note that 

t = 0 = T = To = H 2 / ( H t  +//2) ,  0 <( To < 1, (12a) 

and the thickness of  the upper and lower layer is zero when 

h~ = 0 •* t = - H x / q  ~ T = 1, (q ~ 0), (12b) 

h2 = 0 =* t = +H21q ~ T = 0, (q > 0). (12c) 

The interval 0 < T < To thus applies to the situation q > 0, or h2 "+ 0 when T-+ 0, while the 
interval To < T <  1 applies to the situation q < 0, i.e. h~ -+ 0 when T-+ 1. Note that only the 
interval 0 < T < 1 has physical significance. 

It is possible to eliminate either ~1 or ~,2 from equations (1 la,b), and we will draw the 
attention to the homogeneous problem, since a particular solution is given by equations (7a,b). 
After some simple algebra we obtain an equation of the form 

T(1 -- T)2~rr  + (~ -- (~ + ~ + 1) T ) ~ T  -- a/321 = 0, (13a) 

which is the hypergeometric equation, cf. Abramowitz and Stegnn [8]. The vorticity in the 
lower layer can then be deduced from equation (1 la) 

25 = ~ l  - (1 - T)~IT/C1. (13b) 

The coefficients a, ~ and 7 are given here by the relations 

7 = --(1 Jr 2k)C2, (14a) 

(x+~ = Cl --(1 + 2k)C2, (14b) 

~ = - ( 1  + k)C~C~. (14c) 

The actual values of a and/~ are readily deduced, viz. 

2(x/ = C1 --(1 Jr 2k)C2 +~/C] Jr 2C]C2 +(1  + 2k)2C] '. (15a,b) 
2/3 J 



The hypergeometric equation has the independent solutions 

F(t~,/3; 7; T), T ~ -'rF(1 + a -- 7, 1 +/3 -- 7; 2 -- 7; T), 
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(16a,b) 

provided that 3' is not a positive or negative integer, Abramowitz and Stegun [8]. We also note 
that, in order to compute 22, we may use the relation 

d 
dT F(ct,/3; 7; T) = a--~fl F(a  + 1,/3 + 1; 7 + 1; T). (16c) 

7 

The general solution of the vorticity equations (11 a,b) is 

21 = AXI(T) + BYI(T) + ~ , ,  (17a) 

~2 = AX2(T) + BY~(T) +22s, (17b) 

where A and B are two constants of integration. The functions X1, X2, Y1 and Yu are given by 

XI(T) = F(ot, /3;7; r ) ,  

X2(T) = XI (T) -DI (1  -T)F(c t+ 1,/3+ 1 ; 7 +  1;T), 

YI(T) = TI-'rF(1 + a - - 7 ,  1 + / 3 - - 7 ; 2 - - 7 ; T ) ,  

Y~(T) = YI(T) - (1 -- T)T-*{D2TF(2 + a --7, 2 +/3--7; 3 --7; T) 

+ C~1(1 --7)F(1 +t~--7 ,  1 +/3--7;2-7;T)}, 

(18a) 

(18b) 

(18c) 

(18d) 

where the constants Dt and D2 are given by 

D1 = (1 + k ) / ( l + 2 k ) ,  D2 = (1 +or--7)(1 + /3 -- 7)/(2 -- 7) C1. (19a,b) 

The coefficients A and B must be detemined from the initial condition ~,1 (To) = ~,2(To) = 0. 
We then obtain the linear system 

AXI(To) + BYI(To) = --~,ls, (20a) 

AX2 (To) + B Y2 (To) = - ~,2s. (20b) 

The actual calculations of A and B must certainly be done by numerical methods, since the 
hypergeometric function is not tabulated. This will be done in the next section, where results of 
the numerical computations will be presented. 

In dosing this section we will draw some attention to the limit T-} 0. We are aware that this 
limit is of no physical significance, since the boundary layer approach then cannot be justified. 
The same argument applies to the limit T--} 1. Nevertheless, if we investigate this limit more 
closely, we obtain 
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XI(O) = 1, X2(O) = k/(1 + 2k),  (21a,b) 

Yt(O) = O, Y2(O) = O, (21c,d) 

and it follows that 

2~(0) = 2 , .  +A ,  (22a) 
22(0) = 22. + kA/(1 + 2k). (22b) 

This result deserves some comment, since the steady-state solutions 2xs and 22s are not exactly 

the limits of 21(T) and 22(T ) as T-+ 0 (unlessA = 0). We note that the corresponding limit in 
a one-layer sink flow, as studied by Kranenburg [4], behaves in a more reasonable manner. The 

discrepancies may be attributed to the method of solution, viz. a time scale which is not the 
physical time. Since we treat the Ekman-layers as quasi-steady, some unexpected phenomena 
may very well occur. 

We will also draw some attention to a problem not mentioned so far. In our calculations it 

was presupposed that the parameter 7 given by equation (14a) should be neither a positive nor 
a negative integer. When q > 0, this parameter is negative (and vice versa), and if it happens to 

be an integer, YI(T) is still a valid solution, but XI(T)  must be replaced by a solution which 
involves a logarithmic term. The singular behavior of that function as T-+ 0 is not in accordance 

with the results presented so far. We admit that we cannot give a physical explanation of this 
phenomenon at this moment. We anticipate that a similar phenomenon occurs when q < 0, or 

when T-+ 1. 

4. Numerical results 

In this section we will present some results of the numerical computations. The first task is to 
construct a function routine which calculates the value of the hypergeometric function, since 
this function was not available by our computer (UNIVAC 1100/82). This was done by using 
the definition of the hypergeometric function [8]. We also construct a subroutine which 
computes the values of the functions XI(T), X2(T), YI(T) and Y2(T) defined by equation 
(18). The two constants of integration A and B must be determined from the linear system 

(20a,b). We are then able to compute the relative vorticities 21 and 22 as given by equations 
(17a,b). We have the set of non-dimensional parameters Ro, k, m and HI/H2, which must be 
given appropriate values. We note that the Rossby number (Ro) may be positive (q > 0) or 
negative (q < 0). The initial value To is determined by the ratio H1/H2, since To = (1 + 
n d n 2 )  -1 

A lot of numerical experiments have been performed, but we will not overburden the 
present paper with too many examples, We will depict some results which we believe represent 
the characteristic features of the spin-up process. We will fix the values of Ro = 0.04 and To = 
0.5, but vary the parameters m and k. In Figure 2 we depict the time evolution of the relative 
vorticities 21(T) and 22(T) when m = 0.5 and k = 1.0. The vorticity first grows according to 
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Figure 2. Computer  output  o f  the (nondimensional) vortieity ~ as a function o f  the (nondimensional) t ime 
T. Solid curve: ~L, dashed curve: ~,2, initial value T O = 0.5. The two straight (dashed) lines represent the 
vorticities according to inviseid theory.  The parameter values are Re  = 0.04, m = 0.5 and k = 1.0. 

inviscid theory (conservation of  potential vorticity), but very soon viscous effects invalidate this 

evolution. The f'mal (steady) states are given here by equations (7a,b): 

+ ) +004 , 3a, = (2k 1) - -  1 = + = 

}~2, = Ro k (m -- 11 = -- Ro = -- 0.04. (23b1 
m 

We conclude that the two layers are spun up at time T ~ 0.4 for this set of  parameters. 

In Figure 3 we depict the results when m = 0.25 and k = 0.5. The final (steady) states are 

given here by ~ls  = 0 and }~2s = -- 0.06, respectively. The response in this case is quite differ- 

ent, since the vorticity in the upper layer first increases and then decreases to its f'mal value. 

The time needed to reach the final values are somewhat longer than in the previous case, viz. 

T ~ 0 . 3 .  

In Figure 4 we depict the results when m = 0.9 and k = 3.0. The final (steady) states are 

given here by ~ls  = 0.1466 and }~2s = -- 0.0133. If  we compare this case with the previous 
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Figure 3. For legend see Figure 2. parametez values are Ro = 0.04, m = 0.25 and k = 0.5. 

cases, it is readily deduced that the response is much slower (note that the vertical scale is not 
the same). The final (steady) states are only reached at the end of the time interval, T~. 0.0, 
as opposed to the previous cases. 

In concluding this section it may be appropriate to note that in all our computations the 
constant of integration A was at least two orders of magnitude less than the corresponding 
steady solutions. This is of interest in relation to the comments given at the end of the last 
section, of. equations (22a,b). 

5. The ve loc i ty  c o m p o n e n t s  

In this section we will present the general expressions for the interior velocity components 
(U, V, W) in terms of the vorticity Z. The vertical velocity can be deduced from equation (la), 
viz. 

Zt 
Wz = 2---~" (24a) 

This equation is readily integrated, and the result is given by 
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Figure 4.  For legend see Figure 2. Parameter values are Ro = 0 .04,  m = 0.9 and k = 3.0. 

W, = Z , t ( z - - H ) / 2 1 2 ,  (24b) 

m 
W2 = Z2tz /212  + q -~ Ro-tZ2/2~2. (24c) 

The radial velocity then follows from the equation of continuity 

(rU)r = - rWz = - rZt/2~2, (25a) 

subject to the boundary condition U(b,  t) = O. The solution is 

Ul(r ,  t)  = Z4--~ (b2 - r 2 ) ,  (25b) 

U 2 ( r , t )  = Z2t  (b 2 _r2 )"  
4r~2 "-  

(25c) 

It is possible to introduce a stream function S = S(r ,  z ,  t)  so that rU = - - S  z and rio = + S r. 

A stream function, satisfying the condition S(b ,  z ,  t)  = constant, is then given by 
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S 1 = Z It ( b2 - -  r 2 )  (H -- z)/412, 

(z m 2) $2 = -  Z 2 t + q - £ R o - l Z  (b2--r2)/4S2. 

(26a) 

(26b) 

At the initial instant t = 0, we have the relations 

z l t ( o )  = + 2qa/H1,  z 2 t ( 0 )  = - 2qa/H2,  

q 
Sx (r, z, O) = -~ (b 2 -- r : ) ( H - -  z)/Hx , 

q 
s2 ( r , z ,  o) = = 

(27a, b) 

(28a) 

(28b) 

We note that the flow represented by (28a,b) is independent of the physical properties of the 
fluids, i.e. the parameters m and k. This is not very surprising, due to the constraint of conser- 
vation of the total fluid volume. This situation will be modified by viscous effects as the time 
increases, and the physical properties of the fluids will determine the development. 

Let us turn our attention to the azimuthal velocity V(r, t). The equation of motion is readily 
solved, viz. 

V t = --212U = - - Z  t(b 2 - r  2)/2r, 

V(r, t) = -- Z( t ) (b  2 -- r a)/2r,  

(29a) 

(29b) 

where we omit the subscripts 1 and 2 for reasons of convenience. 
The steady, azimuthal velocity in each layer is readily found from the steady value of the 

relative vorticity, cf. equations (7a,b). The steady, radial velocity is equal to zero in each layer, 
while the steady, vertical velocity is given by 

W~, = O, W2s = q ( m  - -  1). (30a, b) 

Since m ~< 1, it follows that I¢2s < 0 when q > 0, and vice versa. The vertical velocity is the 
Ekman-suction into the Ekman-layer at the bottom of the annulus. It follows that if m = I, 
there is no Ekman-suction and the vorticity must be zero. 

In order to complete the solution in terms of the new time variable T, we will rewrite the 
stream function in the form S = S(r, z, T). The result is given here by 

q --z 1--To 
Sx = z -;- (b2 --rz)H'~r, -1---T {1 +Cx(2  2 --2~)}, (31a) 

$2 = ~ .  q (b ~ - -r  2) H2-T!  To {1 + C2((1 + 2k)~, 2 -- k~l)} -- q (b 2 --r2)(1 + k)C2J~2. 

(31b) 
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The actual flow pattern represented by the stream function and the azimuthal velocity can 

readily be depicted, since the vorticity has been found. Since the vorticity is not in general a 

monotonic function of time (T), the radial velocity may very well change sign as time increases. 

The same behavior may be expected for the azimuthal velocity, cf. equations (25, 29). 

6. Final remarks 

In this paper we have studied the spin-up of a source-sink driven flow in a two-layer, rotating 

fluid. The governing vorticity equations were solved under the simplifying assumption of 

vanishing small internal and external Froude numbers. This is equivalent to the assumption of a 

fiat interface and a fiat upper surface, so we do not account for the vorticity induced by a 

(radial) flow across constant-depth contours, nor the vorticity induced by the time-dependent 

deviation from the moving interface and the upper surface. However, we are then able to solve 
the present problem in terms of well-known functions of mathematical physics (hypergeometric 
functions). 

In Section 4 of  this paper we have presented some results of our calculations. We have not 

considered such extreme cases as m ,~ 1, k ,~ 1 or k ~, I, although such cases may be of some 

interest in laboratory experiments. We have given results which we believe represent the most 
important features of  the spin-up process. 

In conclusion, we also note that the one-layer sink flow, studied by Kranenburg [4], can be 
deduced from the present study if we (formally) set m = k = 0 and let C1 ~ ~. A solution of 

equation (3a) is then ZI  = Z2. The remaining equation (3b) is then identical to the corre- 

sponding equation given in [4]. The present model may thus be more applicable to the 

situations studied by Kranenburg. It is clear that such important effects as mass entrainment 

at the interface and (air) stress at the upper free surface should be taken into account, so 
further studies are needed. 
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